Chimica Acta

© Springer-Verlag 1990

Calculation of the maximum bond order

Chang-Guo Zhan, Qiong-Lin Wang, and Fang Zheng

Department of Chemistry, Central China Normal University, Wuhan 430070, People's Republic of China

Received May 30, 1990/Accepted July 16, 1990

Summary. Based on the maximum overlap method, an alternative scheme for the calculation of the maximum bond order defined by Jug is introduced to simplify the calculation procedure.

Key words: Bond order - Maximum bond order - Maximum bond order principle - Maximum overlap method

To describe the valence multiplicity of chemical bonds in molecules in their equilibrium and nonequilibrium situations, Jug proposed the maximum bond order principle [1] which can serve as a generalization of the chemist's idea of single and multiple bonds. This principle has since been developed further and widely applied to studying molecular structure and reactivity [2-11].

Let $A = (|a_1\rangle|a_2\rangle \cdots |a_m\rangle)$ and $B = (|b_1\rangle|b_2\rangle \cdots |b_n\rangle)$ be an orthonormal AO (atomic orbital) basis sets on atoms A and B. The corresponding two sets of orthonormal hybrids G on A and H on B are expressed as

$$
\begin{cases}\nG = (|g_1\rangle|g_2\rangle \cdots |g_m\rangle) = AT \\
H = (|h_1\rangle|h_2\rangle \cdots |h_n\rangle) = BU\n\end{cases}
$$
\n(1)

where T and U are unitary matrices of order m and n , respectively. For the sake of simplicity, we assume $m \le n$. According to Murrell's two theorems [12] for the maximum overlap criterion $[12-16]$,

$$
\sum_{i=1}^{m} \langle g_i | h_i \rangle = \text{maximum}, \tag{2}
$$

if Eq. (2) is satisfied, then

$$
\langle g_i | h_j \rangle = 0, \quad i = 1, 2, ..., m, \quad j = m + 1, ..., n;
$$
 (3)

and

$$
\langle g_i | h_j \rangle = \langle g_j | h_i \rangle, \quad i, j = 1, 2, \dots, m. \tag{4}
$$

Denote the $m \times n$ matrix $G^{\dagger}H$ by S_{1g} , $A^{\dagger}B$ by S, and the $m \times m$ submatrix formed from the first *m* columns of S_{1g} by S_1 . Then Eqs. (2-4) can be expressed, 130 C.-G. Zhan et al.

respectively,

$$
Tr(S_{1e}) = Tr(S_1) = Tr(T^{\dagger}SU) = \text{maximum},\tag{2a}
$$

$$
S_{1g} = (S_1 \mid 0) \tag{3a}
$$

and

$$
S_1^{\dagger} = S_1. \tag{4a}
$$

Apparently, Eqs. (3a) and (4a) are two necessary conditions for Eq. (2a).

Under the maximum bond order principle, the calculation of the maximum bond order is a basic step. The maximum bond order between atoms A and B is defined as the maximum of the trace of elements of G and H coupled through the density operator \hat{P}_{op} [1]:

$$
P_{AB} = \text{Tr } M = \text{Tr}(T^{\dagger}PU) = \text{maximum} \tag{5}
$$

where $M = G^{\dagger} \hat{P}_{op} H$, $P = A^{\dagger} \hat{P}_{op} B$ and $Tr = \sum_{i}^{m} m(m,n) = \sum_{i}^{m} M_n$. Matrix P is the two center part of the density matrix of A and \overline{B} over the basis of OA's [1] and can be obtained from a molecular orbital calculation. Clearly, M and P all are $m \times n$ matrices.

With a procedure [12] similar to the one that Murrell used to prove the two theorems for the maximum overlap criterion, we can prove following two necessary conditions for the requirement $Tr M =$ maximum: (1) the last $n-m$ columns of M all are zero; and (2) the submatrix M_1 formed from the first m columns of M is a $m \times m$ Hermitian matrix, i.e.

$$
M = (M_1 \mid 0) \tag{6}
$$

and

$$
M_1^{\dagger} = M_1. \tag{7}
$$

It follows that

$$
MM^{\dagger} = M_1^2 = T^{\dagger} P P^{\dagger} T. \tag{8}
$$

To diagonalize matrix *PP** one get

$$
PP^{\dagger} = V D(\lambda_1, \lambda_2, \dots, \lambda_m) V^{\dagger}.
$$
 (9)

Substitution of Eq. (9) into Eq. (8) gives

$$
M_1^2 = (V^{\dagger}T)^{\dagger}D(\lambda_1, \lambda_2, \dots, \lambda_m)(V^{\dagger}T)
$$

$$
M_1 = (V^{\dagger}T)^{\dagger}D(\pm |\sqrt{\lambda_1}|, \pm |\sqrt{\lambda_2}|, \dots, \pm |\sqrt{\lambda_m}|)(V^{\dagger}T)
$$
 (10)

$$
\operatorname{Tr} M = \operatorname{Tr} M_1 = \sum_{i=1}^{m} \left(\pm \left| \sqrt{\lambda_i} \right| \right). \tag{11}
$$

It follows from Eqs. (9-11) that there exist 2^m forms of matrix M_1 satisfying the two necessary conditions, but only one of them satisfies the requirement Tr $M =$ maximum. If and only if all the square roots are positive values can the requirement be satisfied. Thence

$$
P_{AB} = \sum_{i=1}^{m} |\sqrt{\lambda_i}|,\tag{12}
$$

i.e. the maximum bond order is the sum of positive square roots of eigenvalues of matrix *PP[†]*. The calculation procedure [1] of the maximum bond order is thereby simplified.

Acknowledgement. The authors express their sincere thanks to Professor Karl Jug for his valuable suggestions during the preparation of the manuscript.

References

- 1. Jug K (1977) J Am Chem Soc 99:7800
- 2. Jug K (1978) J Am Chem Soc 100:6581
- 3. Jug K, Bussian BM (1978) Theor Chim Acta 50:1
- 4. Jug K (1979) Theor Chim Acta 51:331
- 5. Jug K, Bussian BM (1979) Theor Chim Acta 52:341
- 6. Jug K (1983) J Org Chem 48:1344
- 7. Jug K (1984) J Comput Chem 5:555
- 8. Jug K (1984) Croat Chem Acta 57:941
- 9. Jug K (1985) Tetrahedron Letter 26:1437
- 10. Jug K (1985) Theor Chim Acta 68:343
- 11. Jug K (1986) J Am Chem Soc 108:3640
- 12. Murrell JN (1960) J Chem Phys 32:767
- 13. Maksi6 ZB (1983) Pure Appl Chem 55:307
- 14. Liu F, Zhan CG (1987) Int J Quantum Chem 32:1
- 15. Zhan CG, Liu F, Hu ZM (1987) Int J Quantum Chem 32:13
- 16. Zheng F, Zhan CG (1990) J Mol Struct (Theochem) 205:267